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ABSTRACT: The ultrasonic testing of concrete structures has posed many problems. Conventional methods
such as pulse echo and pitch catch are of limited use due to its composition as aggregates will cause scattering
and multiple reflections. Alternative ultrasonic methods have been recently investigated that examine the shape
of the waveform as it traverses through a complex material, the idea being not to locate a single defect but to
determine the overall mechanical properties within a certain region.

In damaged materials, particularly ones that have micro-cracking, the stress-strain relationship does not obey
Hooke’s Law of elasticity, stress is not proportional to strain. It is not linear, resulting in distortions to a pure
ultrasonic sine wave traversing through it. The degree of this distortion is measured by examining the spectral
content of the waveform, second, third and higher harmonics will be presentand are related to the degree of micro-
structure damage. Additional practical advantages in detecting non-linearity may be achieved by transmitting
the sum of two ultrasonic sine waves into a material from one transducer and examining the spectra for inter-
modulation products. This paper details experiments on small samples of concrete using both harmonic and
inter-modulation spectral analysis.

1 INTRODUCTION through or over the surface region of a medium. These
changes are directly related to the stress-strain rela-
The testing of concrete structures has posed many tionship and the hysteretic properties of a material and
problems. Conventional ultrasonic transmission and  are not unduly effected by the ray path. In damaged
pulse echo methods have limitations due to the nature  materials, particularly ones that have micro-cracking,
and composition of concrete since they cause multiple  the stress-strain relationship does not obey Hooke’s
reflections and non-direct ray paths. Alternative ultra-  Law of elasticity, stress is not proportional to strain: it
sonic methods have been recently investigated that s not linear. In addition, these materials often have a
examine the shape of the waveform as it traverses  stress-strain relationship that is non-symmetric, that is
through or over a complex material, the idea being  the reaction to compression forces will have different
not to located a single defect but to determine the  properties to that of tensile forces: this is a result of
overall mechanical properties within a certain region.  the cracks opening and closing under tensile or com-
These methods are known as Nonlinear Elastic Wave  pressional loads. Figure 1 shows two photographs of
Spectroscopy (NEWS). Lacouture (Lacouture et al  sectioned micro-cracked concrete samples, the cracks
2003) details a NEWS method to monitor the cur-  having been formed by chemical degradation and
ing process of concrete, by means of transmittingand  mechanical damage. These photographs, provided by
receiving an 8 kHz sine wave signal through the set-  Geomaterials Research Services Ltd, were taken using
ting concrete. Van Den Abeele (Van Den Abeele et al  epifluorescence illumination with a Zeiss Axioskop
2001) outlines various NEWS techniques to measure  polarizing photomicroscope.
micro-scale damage in building materials, including The stress-strain curve for non-linear behavior is
concrete. In one of the NEWS methods two different illustrated in Figure 2. The result of non-linearity is that
frequencies are transmitted into the material via two  any stress loading that is in the form of a pure sine wave
separate transducers and a third transducer is used as  will produce a strain that is distorted as it traverses the
a receiver. material. This is illustrated in Figure 3. The degree of
Non-linear acoustic methods seek to determinehow  this distortion is measured by examining the spectral
an ultrasonic waveform changes when it propagates  content of this distorted waveform, second, third and
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Figure 1. Photographs of micro-cracking in concrete.
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Figure 3.  Waveform distortion.

higher harmonics will be present and are related to the
amount of damage.

Greater sensitivity to non-linear effects can be
achieved by transmitting complex waveforms into the
material, for example a waveform that is composed
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Figure 4. Harmonic generation.

of the sum of two sine waves. Any non linearity will
act to produce a multitude of frequency components
in the spectra, called inter-modulation products. Con-
siderable practical advantages can be made if only one
transducer is used to transmit these complex wave-
forms. To achieve this, wideband transducers that are
acoustically matched to the test material were devel-
oped that do not generate non-linear effects internally
or at the point of contact with the concrete, these trans-
ducers were used in the experiments detailed in this

paper.

2 HARMONIC GENERATION

The simplest method in a practical system that mea-
sures non-linear effects in a material using acoustic
waves is to measure the harmonics generated when a
pure tone (pure sine wave) is transmitted through or
over the surface of a material. This is illustrated below
in Figure 4.

The harmonics are measured by examining the
power spectra of the received signal. The transmitted
frequencies (fundamental) magnitude is compared to
that of the magnitudes of each of the harmonic fre-
quencies. These harmonics are expressed in terms of
decibels (dB) down from the fundamental; that is the
number of decibels below the fundamentals magni-
tude. These values can be converted to a distortion
factor that is expressed as a percentage.

Other non-harmonically related frequencies may
also be generated by the sound wave, particularly in
the presence of severe defects, these are called over-
tones and noise: they result from acoustic emissions,
hysteresis and other effects. Figure 5 below shows
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Figure 6. Harmonics generation over surface of concrete
test cylinders.

Figure 7. Transducers connected to a drilled core test
sample.

the photographs of two concrete test cylinders (size
300 mm long, 150 mm diameter).

Figure 6 below shows the results obtained by send-
ing a 50 kHz sine wave over the surface of these two
cylinders of concrete. The second harmonic gener-
ated in the severely cracked region is clearly visible
and has a level of distortion above 1%. The third and
fourth harmonics are not so prominent but have val-
ues above 0.5%. The undamaged concrete sample does
not produce any clear harmonics and consists of noise
predominately below 0.25%.

The photograph in Figure 7 shows a micro-damaged
drilled test core with the ultrasonic transmitter on the

409

T T ; ; —
amplitde Transmitted through pisiaigd
(dB) wh fo=d40KHz the test core |
nH | ]
oo 4
o 4
wl 3 -+, ]
AN,
'1
A 0.25%
TV \«;\ W i
il V
n -
100 m
fmqusnry [K]{g_)
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Figure 9. The power spectra of the sum of two sine waves

right and the receiver on the left. The trace A of the
spectral plot in Figure 8 shows that transmitting and
receiving in a line through the concrete close to the
crack produces relatively high levels of 2nd, 3rd and
4th, harmonics above 0.5%. Transmitting and receiv-
ing in a line away from the crack, shown as trace B
produces little harmonic content.

3 INTER-MODULATION
If two sine waves of different frequency are added
together the resulting power spectrum is unaltered, this
is illustrated in Figure 9 below.

An ultrasonic wave composed of the sum of two
sine waveforms of different frequencies, f1 and f2 with
equal amplitude, can be represented by

[sine(a) + sine(b)], where a = 2xnfit and b = 2nfst.
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sum waveform being subject to a square law distortion.

If this waveform is passed through a material that
exhibits a square law stress-strain relationship. The
resultant wave forms can be expressed as:-

A(t) = [sin(a) + sin(b)]*

by expansion this gives:-

A(t) = sin’(a) + 2 sin(a) sin(b) + sin’(b)

using the standard trigonometric identity formulae

sin(a).sin(b) = ¥ [cos(a-b) — cos(a+b)]

and noting that
sine(a).sine(a) =
[cos(0) — cos(2a)]

Y2 [ cos(a-a) — cos(ata)] = Y2

which becomes =% [1 — cos(2a)], since cos (0) =1,
then the expression for A(t) becomes:-

A(t) = "A[1 - cos(2a)] + [cos(a - b) - cos(a + b)] +
Y[ 1-cos(2b)]

re-arranging

A(t) =1 + cos(a - b) - cos(a + b) -
cos(2b)

Y2 cos(2a) — Y2

Figure 10 below shows a graphical representation of
this process. Four distinct frequencies and one constant
term are generated by this process, the frequencies are;
the second harmonics of f; and f, that is (2*f;) and
(2*f,). The sum and difference frequencies of f; and
f, that is (f; 4+ f,) and (f; — f,). The second harmon-
ics are half the amplitude of the sum and difference
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Figure 11. Test Arrangement.
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Figure 12. Dual frequency (40/120 KHz) spectra and time
data plot of a good and damaged test cube.

frequencies. As there is a larger variation in the gen-
eration of the sum and difference frequencies these
should provide greater sensitivity in the indication of
non-linearity. If the sine wave sum is subject to non-
linearity that is of a higher order than a square law
stress-strain relationship then many other multiples,
sum and difference combinations result, these will all
appear in the spectra.

Figure 11 shows a photograph of the transmitter
and receiver placed against a test sample cube of
concrete (size 50 x 50 x 50 mm). Two concrete test
samples were selected and are shown in this figure,
one has a crack running through its entire length,
the other is undamaged. The transmitter comprises a
single piezoelectric wide band actuator that is con-
tinuously sending the sum of two sine waveforms at
pre-programmed frequencies.

Figure 12 shows the time and spectrum plots for the
received waveform having passed through each of the
concrete test cubes. The difference in the magnitude of
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Figure 14. Dual frequency (40/70 KHz).

the two frequencies results from the ultrasonic atten-
uation of concrete being frequency dependent, losses
are greater at higher frequencies. The data for the dam-
aged and undamaged samples are labeled in this figure
as A and B respectively.

The damaged sample shows clearly that harmonics
and inter-modulation products have been generated by
the crack. The upper side band (f1 + f2) at 160 kHz
is below 0.5% for the good sample and rises above
1% in the damaged sample. The second harmonic of
f2 at 240kHz changes from, —56 dB (0.16%) in the
good sample and rises above 0.5% in the damaged
sample. The effect of the combinations of the harmon-
ics and inter-modulation products are very noticeable
in the frequency range 200 to 350 kHz. For example,
2f2 (240 kHz), 2f1 4 f2 (200 kHz), f1 + 2f2 (280 kHz)
and 2f1 + 2f2 (320 kHz). The result is the formation
of peaks and troughs within this range, corresponding
to the interaction of their frequencies and phases, this
effect can mask the changes between the good (trace
B) and bad sample (trace A). The correct choice of
the two frequencies f2 and f1 is an important factor.
Figure 13 illustrates this by showing the spectra result-
ing from two different frequency combinations, f; + f,
is reduced by the effect of the third harmonic of f;
(3*f).

Figure 14 shows a spectral plot taken over the
surface of a mildly damaged region of the concrete
test cylinders, shown previously in Figure 4. This test
was performed at the two frequencies 40 and 70 kHz.
The two fundamental frequencies are not sufficiently
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Figure 16. Over surface of test core.

separated to form clear spectral peaks, however the
inter-modulation products and in particular the sec-
ond multiple of f; + f, that is 2*(f; + ;) shows a very
clear peak above 1% distortion in the damaged region
(trace A).

Figure 15 shows a dual frequency being applied to
the micro-damaged drilled core. The dual frequency
ultrasonic waveform was transmitted through the sam-
ple at two locations, one along the crack, shown in
and the other away from the crack shown as the two
white circles. The difference between the two locations
is very clear. The cracked region produces harmonics
and inter-modulation products well above 0.5% distor-
tion factor and f; +f, is above 1%. The less cracked
region has all levels below 0.5% and for frequencies
above 250 kHz is below 0.25%.

Figure 16 shows the same core but this time tested
on one side only, the receiver positions are indicated
by the letter R and the transmitter positions by letter
T. Trace B corresponds to a position away from the
crack and trace A near to the crack. There is less dif-
ference between the two positions at low frequency
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however at higher frequencies, above 300kHz, the
cracked region does produce a significantly higher
levels of inter-modulation produces particularly at
3f, +f1 (310 kHz).

4 CONCLUSIONS

Utilizing just two transducers, measurement of har-
monic generation together with the production of
inter-modulation products resulting from the transmis-
sion of an ultrasonic wave or the sum of two ultrasonic
waves of different frequency, through or over the sur-
face of a concrete test sample has shown to have the
ability to detect cracks and micro-cracks. The method
indicates that it can provide a quantitative measure-
ment of the non-linearity of the concrete and thereby
giving a measure of the degree of damage.
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